238 research outputs found

    Effective DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei

    Full text link
    A new decomposition of the Dirac structure of nucleon self-energies in the Dirac Brueckner-Hartree-Fock (DBHF) approach is adopted to investigate the equation of state for asymmetric nuclear matter. The effective coupling constants of σ\sigma , ω\omega , δ\delta and ρ\rho mesons with a density dependence in the relativistic mean field approach are deduced by reproducing the nucleon self-energy resulting from the DBHF at each density for symmetric and asymmetric nuclear matter. With these couplings the properties of finite nuclei are investigated. The agreement of charge radii and binding energies of finite nuclei with the experimental data are improved simultaneously in comparison with the projection method. It seems that the properties of finite nuclei are sensitive to the scheme used for the DBHF self-energy extraction. We may conclude that the properties of the asymmetric nuclear matter and finite nuclei could be well described by the new decomposition approach of the G matrix.Comment: 16 pages, 5 figure

    Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten

    Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory

    Application of the density dependent hadron field theory to neutron star matter

    Get PDF
    The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe β\beta-stable matter and neutron stars under consideration of the complete baryon octet. The meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear matter and extended to hyperons. We examine properties of density dependent interactions derived from the Bonn A and from the Groningen NN potential as well as phenomenological interactions. The consistent treatment of the density dependence introduces rearrangement terms in the expression for the baryon chemical potential. This leads to a more complex condition for the β\beta-equilibrium compared to standard relativistic mean field (RMF) approaches. We find a strong dependence of the equation of state and the particle distribution on the choice of the vertex density dependence. Results for neutron star masses and radii are presented. We find a good agreement with other models for the maximum mass. Radii are smaller compared to RMF models and indicate a closer agreement with results of non-relativistic Brueckner calculations.Comment: 28 pages, 11 figure

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Summary of the NuSTEC Workshop on Shallow- and Deep-Inelastic Scattering

    Get PDF
    The NuSTEC workshop (https://indico.cern.ch/event/727283) held at L'Aquila in October 2018 was devoted to neutrino-nucleus scattering in the kinematic region where hadronic systems with invariant masses above the Δ(1232)\Delta(1232) resonance are produced: the so-called shallow- and deep-inelastic scattering regime. Not only is the physics in this kinematic region quite intriguing, it is also important for current and future oscillation experiments with accelerator and atmospheric neutrinos. For the benefit of the community, links to the presentations are accompanied by annotations from the speakers

    Measurement of the Parity-Violating Asymmetry in Inclusive Electroproduction of π- near the Δ0 Resonance

    Get PDF
    The parity-violating (PV) asymmetry of inclusive π-production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasifree photoproduction off the neutron via the Δ0 resonance. In the context of heavy-baryon chiral perturbation theory, this asymmetry is related to a low-energy constant dΔ- that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated dΔ- in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from Aγ-=-5.2 to +5.2  ppm. The measurement performed in this work leads to Aγ-=-0.36±1.06±0.37±0.03  ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to Vud/Vus. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form factors using PV electron scattering
    corecore